Quality

Improving Fly Ash Processing

Fly Ash particles are small spheres. When processed (graded) this sphere shape should not be cracked – angular shaped particles should be avoided.  To avoid this all DIRK PHOENIX Fly Ash processing projects use air for conveying as well as for classification. This is important for utilization of DIRK PHOENIX products of all grades as the maintained sphere shape reduces the water demand in concrete which also leads to improved concrete strength.

As mentioned in the chapter GRADES, smaller particles create more surface for better pozzolanic reaction and reduction of free lime which improves the sustainability of concrete.

The smaller spheres create a dense concrete as they can more easily fill the voids between the aggregates.

The classification of fly ash means extraction of a certain particle size out of a stream of mixed particles. Consequently specific size demands can not be fulfilled. To close the gap between demand and supply, rejects from the classification process are ground. This increases  the fraction of angular shape. A partial replacement of cement by ground fly ash in concrete can be seen from the table below:

The  cement industry is grinding run-off-station ash or rejects from classification together with their cement clinker. The result is a PPC  with similar features like blended OPC with ground fly ash.

Note: DIRK PHOENIX do not provide ground Fly Ash to maintain the outstanding quality introduced by Georg Dirk in to India.

Comparison Table of Dirk Phoenix (DP) Fly Ash Grades to International Standards

International Codes Dirk Phoenix Specification
Test No. Test Unit ASTM 618 EN 450 BS 3892 IS 3812 DP 10 DP 30 DP 40 DP 60 DP 63 DP 83 DP 93 DP 100
Category S Category N
1 Fineness – Specific Surface by Blaine’s Permeability Method m2/kg Not Specified 320 Not Specified Not Specified 280 320 400 500 500 625
2 ROS 25 micron sieve % Not Specified 5.0 Not Specified 0.0
3 ROS 45 micron sieve % 34.0 12 max 40 max 12.0 34.0 70.0 34.0 25.0 18.0 10.0 Not Specified Not Specified Not Specified
4 Loss on Ignition(Max.) % 6.0 7.0 7.0 5.0 5.0 4.0 2.5 2.5 2.5 2.5 5.0 0.25
5 Water Requirement % 115% 95% max Not Specified 95% max Not Specified 95% max 95% max 95% max 95% max 95% max 95% max 92% max
6 Moisture Content(Max.) % 3.00 0.50 2.00 2.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50
7 Soundness by Autoclave 0.8% 10mm 10mm 0.80% Not Specified 0.10% 0.05% (Typ) 0.05% (Typ) 0.05% (Typ) 0.05% (Typ) 0.05% (Typ) 0.05% (Typ)
8 Compressive Strength At 28 days – % of Plain Cement Mortar N/mm2 75% 75% 80% 80% Not Specified 70% 80% 80% 80% 80% 80% 80%
9 Lime Reactivity(Minimum) N/mm2 4.5 4.5 4.5 6.0 6.0 6.5 7.5
Chemical Analysis
11 SiO2 + Al2O3 + Fe2O3 % 70.0 min 70.0 min Not Specified 70.0 min 70.0 min 70.0 min 70.0 min 70.0 min 70.0 min 70.0 min 70.0 min 70.0 min
12 SiO2 % Not Specified Not Specified 35.0 min 35.0 min 35.0 min 35.0 min 35.0 min 35.0 min 35.0 min 35.0 min 50.0 min
13 Reactive Silica % 25% min 20.0 min Not Specified Not Specified 20.0 min 20.0 min 20.0 min 20.0 min 20.0 min 20.0 min
14 MgO % 4.0 max 5.0 max 5.0 max 5.0 max 4.0 max 4.0 max 4.0 max 4.0 max 4.0 max 4.0 max
15 CaO % 10.0 max 10.0 max 10.0 max Not Specified 10.0 max 10.0 max 10.0 max 10.0 max 10.0 max 10.0 max 10.0 max 10.0 max
16 SO3 % 4.0 max 3.0 max 2.0 max 3.0 max 3.0 max 2.0 max 2.0 max 2.0 max 2.0 max 2.0 max 2.0 max 2.0 max
17 Na2O % Not Specified 5.0 max Not Specified 1.5 max 1.5 max 1.5 max 1.5 max 1.5 max 1.5 max 1.5 max 1.5 max 1.5 max
18 Total Chlorides % Not Specified 0.10 max 0.10 max 0.05 max 0.10 max 0.05 max 0.05 max 0.05 max 0.05 max 0.05 max 0.05 max 0.05 max